Andrew M. Chap

(240) 687-2518 • and rew@and rewchap.com • Potomac, MD, USA

PROJECT leader and equal parts aerospace engineer & software engineer. Passionate about software architecture with OOP design and AI-assisted code development. • Author of algorithms currently flying on satellites. • Effective communicator with a love for data visualization in Python and MATLAB. • Plasma physics background with experience in parallel pro-• Team-builder who enjoys gramming. concocting coding questions and conducting interviews.

Ph.D., Aerospace Engineering	2017
University of Maryland, College Park, MD	GPA 3.92
B.A., Physics	2006
College of the Holy Cross, Worcester, MA	gpa 3.56

— TECHNICAL SKILLS

C++, Python (NumPy, SciPy, Pandas, Plotly, Dash etc.) MATLAB, CUDA, Bash, PowerShell, Git, Jira VS Code, Vim, HPC/Cloud computing, ChatGPT-01, LATEX, HTML/CSS Kalman filters, quaternions, global optimization, Monte Carlo, orbital dynamics, structural dynamics, electromagnetics, plasma physics, & beamforming

Comfortable with remote/in-office/hybrid work
Willing to travel as needed

Relevant Experience

AST SpaceMobile

Principal Simulation Engineer Senior Simulation Engineer Lanham, MD, hybrid remote June 2023 - Present April 2020 - June 2023

- Manager and chief author of the differential GPS algorithm (C++ flight code) using phase measurements of GPS signals to estimate satellite deformation & misalignment of the antenna array, used to enhance cell phone connectivity operations on AST's BlueBird satellites
- Concurrently tasked up to 4 team members in: algorithm development, parameter optimization, flight software integration, hardware R&D & testing, flight operations coordination, and flight telemetry downloads
- Responsible for numerous bugfixes and enhancements across multiple teams' flight code, including in Kalman filters, quaternion computations, orbital dynamics, and beamforming, for all AST satellites
- Developed pre-launch hardware-in-the-loop automated test for the differential GPS algorithm on Blue-Walker 3: MATLAB-simulation → GPS RF signal generator → GPS receiver → binary port reader → differential GPS algorithm (flight code) → results validation & visualization.
- Developed the directional antenna-pointing table-generation (ground ops) and on-board antenna correction algorithm (space ops), both currently in use for BlueWalker 3.
- Created a comprehensive MATLAB+SSH launcher/visualizer for AST's C++/Docker software-in-the-loop sim
 - * Used by multiple teams (flight software, controls, payload) enabling parameterizable/repeatable testing with intuitive visualization of simulation environment and
 - * Deployed an automated regression tester that sends alerts and summaries to a Microsoft Teams channel

Tech-X Corporation

Associate Research Scientist

- Invented a new algorithm for correctly populating particles governed by space-charge-limited emission in particle-in-cell simulation (publication) (presentation)
- Improved the speed-limited particle-in-cell algorithm in Tech-X's VSim software, resulting in a 1.5× speed increase and a 75% decrease in error for the relevant canonical test problem.
- Implemented automatic plotting and production of artifacts for failed tests on the Jenkins CI/CD pipeline and created reports on computation time and memory usage for each test.

Boulder, CO Dec 2017 - July 2019

Maxar Technologies

Site Reliability Engineer

- Operated and customized Nimsoft Infrastructure Manager to monitor production servers; developed Bash scripts for custom alarm triggers, participated in on-call shifts handling alerts, and analyzed historical alarm patterns to aid root-cause analysis.
- Automated the process of creating organizational AWS commercial/GovCloud accounts with IAM roles tied to security groups; added logging & fault recovery features and handed off code module to ops team

UMD Space Power and Propulsion Laboratory

Graduate Research Assistant, Inertial Electrostatic Confinement (IEC) Fusion

- Conceptualized the truncated icosahedron continuous-electrode IEC with permanent magnets (video). For analysis developed multiple independent magneto/electrostatic plasma simulations in MATLAB, including:
 - * An N-body discrete-event simulation to study electron/ion dynamics in complex 3D geometry (video)
 - * A 2D3V axisymmetric particle-in-cell simulation for fast simulation using an axisymmetric assumption. Translated bottlenecks into C and CUDA, resulting in a 150× speedup when run on a GPU (video)
- Developed simulations with MATLAB GPU computing to generate large sets of data to develop a new heuristic model of Coulomb collisions for use in particle-in-cell simulations published in APS Physical Review.

NASA Johnson Space Center

Graduate Intern / NASA Space Technology Research Fellow

Jan–Jul 2013, Jul–Sep 2014, Jul–Nov 2015

- Designed, calibrated, and operated an ion current probe and high-voltage 2 kHz switch with an oscilloscope and a magnetic sensor probe to profile a charged-particle beam and make design recommendations.
- Developed a 2D3V axisymmetric particle-in-cell simulation of the traveling-wave direct energy converter, providing estimates on power generation, and determined that next-gen experiments would require significantly higher magnetic containment fields to produce meaningful results (video)

Personal / Hobby Projects

- Created a mortgage analysis Python module that uses time-value-of-money calculations, with a Dash (Python) web application frontend deployed on Google App Engine.
- Creator of the num2tex and symdim Python modules.

Publication Summary

- Coulomb collision model for use in non-thermal plasma simulation Chap, A. M., Sedwick, R. J., *Physical Review E* **95**:6 063209 (2017)
- One-Dimensional Semianalytical Model for Optimizing the Standing-Wave Direct Energy Converter Chap, A. M., Sedwick, R. J., *Journal of Propulsion and Power* **31**:5 1350–1361 (2015)
- A new simple algorithm for space charge limited emission Stoltz, P., Luginsland, J., Chap, A. M., Smithe, D. N., Cary, J. R., *Physics of Plasmas* **27**:9 (2020)
- Speeding up simulations by slowing down particles: Speed-limited particle-in-cell simulation Werner, G. R., Jenkins, T. G., Chap, A. M., Cary, J. R., *Physics of Plasmas* **25**:12 123512 (2018)
- Accelerated steady-state electrostatic particle-in-cell simulation of Langmuir probes Werner, G. R., Robertson, S., Jenkins, T. G., Chap, A. M., Cary, J. R., *Physics of Plasmas* **29**:1 (2022)
- Simulation and Optimization of an Inertial Electrostatic Confinement Fusor Chap, A. M., *Ph.D. Thesis, University of Maryland* (2017)
- Systems, Methods, and Devices for Inertial Electrostatic Confinements Sedwick, R. J., Chap, A. M., US Provisional Patent Application 62/367,410 (2016)

University of Maryland Jan 2012 - Dec 2017

Houston, TX