*Auto-zoom is disabled because it doesn't work well with Plotly. Please set your browser to full-screen and zoom in or out until the slides take up the entire page.
Two boundaries:
$J_\mathrm{SCL}$ is the maximum current that can cross the domain due to Space-Charge-Limiting:
$$J_\mathrm{SCL} = \frac{4}{9}\epsilon_0\sqrt{\frac{2 e}{m}}\frac{V^\frac{3}{2}}{d^2}$$
Generalize: $d\rightarrow x$, $V \rightarrow \Phi(x)$
$ \color{blue}{\Phi(x)} = \left(\frac{9}{4} \frac{J_\mathrm{SCL}}{\epsilon_0}\right)^{\frac{2}{3}} \left(\frac{m}{2e} \right)^{\frac{1}{3}} \color{blue}{x^\frac{4}{3}}$
$ \color{green}{E(x)} = \frac{d\color{blue}{\Phi(x)}}{dx} = \frac{4}{3}\left(\frac{9}{4} \frac{J_\mathrm{SCL}}{\epsilon_0}\right)^{\frac{2}{3}} \left(\frac{m}{2e} \right)^{\frac{1}{3}} \color{green}{x^\frac{1}{3}}$
$ \color{purple}{v(x)} = \sqrt{\frac{2 e\color{blue}{\Phi(x)}}{m}} = \left(\frac{9}{2} \frac{e J_\mathrm{SCL}}{m\epsilon_0}\right)^{\frac{1}{3}}\color{purple}{x^\frac{2}{3}}$
$ \color{red}{\rho(x)} = \frac{J_\mathrm{SCL}}{\color{purple}{v(x)}} = \left(\frac{2}{9} \frac{m \epsilon_0 J^2_\mathrm{SCL}}{e}\right)^{\frac{1}{3}}\color{red}{x^{-\frac{2}{3}}}$
Because the equations for SCL flow are self-similar, we can simulate SCL emission on the left boundary without any information from the right boundary $$ \color{red}{J_\mathrm{SCL}\left(x_a,\Phi_a\right)} = \color{purple}{J_\mathrm{SCL}\left(x_b,\Phi_b\right)}$$
Plasma,
Complex Geometry
etc...
$$\color{purple}{\left(\Delta x,\Phi(\Delta x)\right)}$$
To simulate the local emission at the left boundary, we can calculate
$$J_\mathrm{emit} = J_\mathrm{SCL}(\Delta x, \Phi(\Delta x))$$
We can use $\Phi(\Delta x) = E_0\Delta x$ so that our emitted current is:
$$J_\mathrm{emit} = \frac{4}{9}\epsilon_0\sqrt{\frac{2 e}{m}}\frac{E_0^\frac{3}{2}}{\sqrt{\Delta x}}$$
where $E_0 = E(x=0)$ is the surface electric field and we take $\Phi(x=0)=0$.
So we have: $J_\mathrm{emit} \sim \dfrac{E_0^\frac{3}{2}}{\sqrt{\Delta x}}$
Looks strange... because
But...
Test Problem:
$V = 1\,\mathrm{Volt}$, $L = 1\,\mathrm{meter}$
Electrons emitted from left boundary
Steady-state results from calculating $J_\mathrm{SCL}$ from the self-consistent electric field at the left surface
$$\mathrm{Error}\left[J_\mathrm{SCL}\right]\sim \Delta x^\frac{2}{3}$$
Test Problem:
$V = 1\,\mathrm{Volt}$, $L = 1\,\mathrm{meter}$
Electrons emitted from left boundary
Steady-state results from calculating $J_\mathrm{SCL}$ from the self-consistent electric field at the left surface
$$\mathrm{Error}\left[J_\mathrm{SCL}\right]\sim \Delta x^\frac{2}{3}$$
Test Problem:
$V = 1\,\mathrm{Volt}$, $L = 1\,\mathrm{meter}$
Electrons emitted from left boundary
Steady-state results from calculating $J_\mathrm{SCL}$ from the self-consistent electric field at the left surface
$$\mathrm{Error}\left[J_\mathrm{SCL}\right]\sim \Delta x^\frac{2}{3}$$
Same test as before except electrons reflected at right boundary
• Theoretical result: $\left[J_\mathrm{SCL}\right]_\mathrm{two-way} = \frac{1}{2} \left[J_\mathrm{SCL}\right]_\mathrm{one-way}$ since reflected particles create twice the space charge
• In numerical experiments, $\left[J_\mathrm{SCL}\right]_\mathrm{two-way} \lt \frac{1}{2} \left[J_\mathrm{SCL}\right]_\mathrm{one-way}$ because not all particles have exactly the energy needed to return to the cathode, some get trapped and create a virtual cathode that reduces $J_\mathrm{SCL}$
$J_\mathrm{SCL}(t)$
$N_\mathrm{electrons}(t)$
$\Phi(x)$
Issues with electromagnetic SCL
Workaround: impose displacement current density $J_\mathrm{D}$, then in steady-state: $J_\mathrm{SCL} = J_\mathrm{D}$
Integrate $E$ across the gap to find $V$ across the gap, compare to $V_\mathrm{SCL} = \left(\frac{9}{4} \frac{J_\mathrm{D}}{\epsilon_0}\right)^{\frac{2}{3}} \left(\frac{m}{2e} \right)^{\frac{1}{3}} L^\frac{4}{3}$
David Smithe's 3D simulation of 1D SCL flow (download it!)
Impose $J_{\mathrm{D},x}$ periodic boundaries in $y$ and $z$
Test Problem: $J_\mathrm{D} = 250\,\frac{\mathrm{A}}{\mathrm{m}^2}$, $L = 10\,\mathrm{cm}$
$V_\mathrm{SCL} = \left(\frac{9}{4} \frac{J_\mathrm{D}}{\epsilon_0}\right)^{\frac{2}{3}} \left(\frac{m}{2e} \right)^{\frac{1}{3}} L^\frac{4}{3} = 10.5\,\mathrm{kV}$
Baseline simulation: funcVelGen with $J_\mathrm{emit} = 1.25J_\mathrm{D}$
$\left[V_\mathrm{SCL}\right]_\mathrm{funcVelGen} = 11.3\,\mathrm{kV}$
Test: childLangmuirVelGen with no emit current specified
$\left[V_\mathrm{SCL}\right]_\mathrm{childLangmuirVelGen} = 10.9\,\mathrm{kV}$
$\left[\color{black}{V_\mathrm{SCL}}\right]_\mathrm{funcVelGen}$
$\left[\color{black}{V_\mathrm{SCL}}\right]_\mathrm{childLangmuirVelGen}$
Test Problem: $J_\mathrm{D} = 250\,\frac{\mathrm{A}}{\mathrm{m}^2}$, $L = 10\,\mathrm{cm}$, $A = 0.04\,\mathrm{m}^2$, $J_D = 10 \,\mathrm{A}$
$\left[\color{green}{J_\mathrm{cathode-emit}},\color{blue}{J_\mathrm{cathode-absorb}},\color{red}{J_\mathrm{anode-absorb}}\right]_\mathrm{funcVelGen}$
$\left[\color{green}{J_\mathrm{cathode-emit}},\color{blue}{J_\mathrm{cathode-absorb}},\color{red}{J_\mathrm{anode-absorb}}\right]_\mathrm{childLangmuirVelGen}$
Take David Smithe's example, and rotate the plates so that they are not grid-aligned
Periodic boundaries in $x$, $y$, and $z$
Electrodes intersect boundaries such that they are periodic as well
Found strange electron "banding" in both funcVelGen & childLangmuirVelGen
Since $E_\mathrm{normal} \rightarrow 0$, even a small amount of $E_\parallel$ will cause electrons to move parallel to the emitting surface.
Voltage rises over a few crossing times
$$\downarrow$$
Similar results to steady-state problem
Voltage rises over less than a crossing time
$$\downarrow$$
$J_\mathrm{emit}$ oscillates
Pulsed power microwave device
DC power → electron current → RF power
Slow wave structure at twice the resolution:
Slow wave structure at half the resolution:
• Currently working on $v_0>0$ that follows $$J_\mathrm{SCL}(v \gt 0) = J_\mathrm{SCL}(v=0)\left[\left(1 + \frac{\frac{1}{2}mv^2}{eV}\right)^\frac{1}{2}\right]^3$$
• Thermal emitter?
Requires numerical solution to find maximum $J_\mathrm{SCL}$ (excluding return current) for $J_\mathrm{SCL}\left(L\mathrm{gap},V_\mathrm{gap},T_\mathrm{surface}\right)$
• Option to make the particle weights more consistent, by specifying macroparticle weight and maximum particles emitted per cell in a step